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Recent research shows that liquid crystals can be used to report the presence of dif-

ferent types of substances through optical amplication of ligand-receptor binding. In this

work, simulations based on a coarse-grained method have been performed to study a class

of liquid-crystal-based sensors. A tensor order parameter was used to model the liquid

crystalline system and the Beris-Edwards formulation was employed to obtain the time

evolution of a liquid crystal medium containing particles. The simulation cases are built

using three-dimensional unstructured meshes and the simulation geometries studied in-

clude simple models involving spheres as well as detailed modeling for a protein. The

dynamics of a liquid crystal medium confned between two solid walls has been stud-

ied in the presence of spherical particles and a representative biological macromolecule.

Comparisons of steady state and transient solutions from the present study with corre-
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sponding results from molecular dynamics based simulations in the literature yield good

agreements.
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CHAPTER I

INTRODUCTION

1.1 Background and motivation

Current methods used to detect specifc chemical compounds such as proteins, viruses

and chemicals generally require expensive laboratory-based analytical apparatus (e.g. Gas

Chromatography, Mass spectrometry analysis). A new class of sensors based on liquid

crystals is a promising alternative. The underlying principle is that liquid crystals (LCs)

can be used to amplify and transduce receptor-mediated binding of proteins at surfaces

into optical outputs [12]. Optical amplifcation of binding events at a surface relies on the

optical properties of a liquid crystal and its ability to form highly oriented phases [10].

Past experimental studies have shown that the introduction of chemical compounds into

uniformly aligned nematic liquid crystals perturbs the local ordering of the LC and is

accompanied by the formation of topological defects around these compounds [20]. The

important characteristic of such a system is the orientation of the LC at the surface of

the substances (e.g. colloidal particles) present in the LC. The effect of this boundary

condition imposed at the surface of the particles results in the defect structure in the LC

in the vicinity of the particles and this yields a clear optical signal that can be detected

visually.

1
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The design of the sensor is based on the sensitivity of the bulk molecular orientation in

LC medium to changes at interface boundaries. This type of biosensor essentially consists

of a thin flm of a nematic LC between two aligning surfaces. In absence of the analyte the

sensor is designed to detect, the solid surfaces with appropriate surface treatments impose

a uniform state of orientation in the LC medium. When observed through crossed polars,

it shows a uniform structure. When the particular analyte of interest is introduced in the

LC confned between two walls, the long-range order is destroyed and the occurrence of

topological defects gives rise to an optical signature.

The possibility that a particle with homeotropic boundary condition (the liquid crystal

molecules are oriented perpendicular to the surface of the particles) may be surrounded

by a Saturn ring disclination was frst put forward by theoretical studies [15, 25], and then

confrmed in experimental observations [11, 18]. It is also possible that a particle is sur-

rounded by a point defect, but the stability of the defect structure depends on many factors

including the size of the particles, the strength of the anchoring [21], and the presence of

the confning surfaces [10].

Thus the ability of LCs to optically amplify and transduce the binding events at the

substrates provides the basis for the design of LC-based bio-sensors. To improve the de-

sign for this class of liquid crystal based sensors, a good understanding is required about

the occurrence of topological defects and the dynamics associated with them when a cer-

tain class of substances is present in a liquid crystal medium. This work will study the
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ordering dynamics of a three dimensional nematic flm confned between two substrates

in the presence of nanoparticles or biological macromolecules.

1.2 Literature survey of pertinent experimental and simulation studies

Some work has been done experimentally and computationally for the study of sus-

pension of colloidal particles in nematic liquid crystals. Thermotropic LC was used to

detect the binding of analytes with the naked eye [12]. In this experiment, protein Av

(avidin) or IgG (Immunoglobulin G) was binded to ligands hosted within a SAM (self

assembled monolayer) of molecules supported on a gold flm. Liquid crystal cells were

formed by separating two SAMs with a spacer of thin plastic flm. The adsorbed ana-

lytes (Av, IgG) change the orientations of molecules of supported LC, and this gives rise

to an optical signature. The results experimentally demonstrate that the liquid crystals

can be used to report the ligand-receptor binding at solid surfaces. Recently, numerical

simulations have become more common. A molecular dynamics (MD) simulation was

used to investigate the topological defects that appear in the liquid crystalline medium

around a spherical droplet in two-dimensional systems [2]. This work discusses three pos-

sible defect structures in the LC around the particles and their stability under different

conditions. Using a description based on the director, the topological defects in the LC

around a spherical colloid particle have been studied through the use of Monte-Carlo sim-

ulations [21]. The analysis in this study was focused on the effects of anchoring strength

of the boundary surfaces. Dynamic feld theory with tensor order parameter was used
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to compute the evolution of the liquid crystal in the presence of adsorbed nanoparticles

within two-dimensional LC system [8, 22]. The effects of the concentration of particles

in the LC were analyzed in this study. Monte Carlo simulations and dynamic feld theory

were used to study the defect structure for suspended particles in the LC and their inter-

actions [10] in two-dimensional system. Comparison between these two methods shows

good quantitative agreement. Adaptive mesh refnement scheme in two-dimensional sys-

tem was implemented to detect the defect structure of a nematic liquid crystal around a

spherical particle [6]. With this method, the resolution can be made fne enough in the

regions of interest with signifcant change in the orientation of the directors.

1.3 Simulation with tensor order parameter

A description limited to specifying a single scalar order parameter for the whole liquid

crystal medium is inadequate for the present study. Accurate description of the dynamics

associated with the defects in the liquid crystal medium in the presence of nanoparticles

or biological macromolecules requires a specifcation in terms of the tensor order param-

eter. In this work, we use dynamic feld theory (DyFT) of the tensor order parameter to

study the dynamics of LCs in the presence of the particles. The tensor order parameter

formulation includes both long-range and short-range order elastic effects that govern LC

dynamics in contrast to classical theories, which consider one effect only. It has been suc-

cessfully applied to the study of defect structures around the particles in LCs [24]. The

length scales of interests for the nanoparticles, which denote a substance characterized by
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nanoscopic dimensions (e.g. colloidal particles), and macromolecules are in the order of

nm to microns.

From section 1.2, we know in some studies two-dimensional system was implemented.

In some studies, a numerical analysis based on an adaptive grid has been used to study the

director confguration around the spherical particles. In the present study, we provide the

results based on three-dimensional simulation using an unstructured mesh. This method

provides signifcant leeway in using high resolution in regions of interests such as the

locations where the defects are expected to be located and low resolution in other regions.

This enables us to perform effcient computations and present a complete description of

the director felds.

1.4 Objective and scope of the present study

The objective of the present study is to develop and demonstrate a simulation platform

for modeling the liquid crystal sensor. This simulation platform will (a) use a description

based on the tensor order parameter for the liquid crystal, (b) have the ability to han-

dle complex geometry using three-dimensional unstructured meshes to model biological

macromolecules, and, (c) be suitable for performing large computations on a parallel com-

puting framework.

In this work, we will study a simulation framework that uses a tensor order parame-

ter based approach for modeling the behavior of this class of liquid-crystal-based sensor.

From this system, the ordering dynamics for liquid crystals confned between two solid
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walls in the presence of particles has been studied. The size of the particles is of the order

of tens or hundreds of nanometers. This is close to the range of sizes for the target sub-

stances that are to be detected by the experimental sensors. The relaxation of the nematic is

described by a time evolution equation for the tensor order parameter using Beris-Edwards

formulation and this includes both short-range and long-range order elastic effects.

The simulation results presented in this study include the following:

1. The defect structure for one spherical particle immersed in a nematic host.

2. Dynamic interaction between one spherical particle and disclination lines in the LC.

3. Interactions between two spherical particles immersed in the LC.

4. The dynamics in LCs when the spherical particles are adsorbed on the solid surfaces.

5. The defect structure for a case involving a biological macromolecule with detailed
representation of its three-dimensional geometry.

The remainder of this thesis is organized as follows. Chapter II gives the basics for

the properties of liquid crystals. In Chapter III we present the computational details and

the model we used to simulate the liquid crystal medium in the presence of the particles.

Chapter IV contains the results of the simulations. Concluding remarks and suggestions

for future work are given in Chapter V.
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CHAPTER II

LIQUID CRYSTAL BASICS

This chapter deals with the basic concepts of liquid crystals and discusses topics such

as the measure of the orientational order for liquid crystal, the accompanied defect struc-

ture, and applications of liquid crystals. Most of the discussion is based on the contents in

Refs. [4, 19].

2.1 What are liquid crystals?

There are three common states of matter in the world including solid, liquid and

gas. The differences among them are the degree of order including positional order and

orientational order.

In the solid state, the molecules are constrained to occupy only certain positions. We

call this condition as positional order. In addition, the molecules in these specifc positions

are arranged in a fxed orientation. When a solid melts to a liquid, both types of order are

lost completely. The molecules in liquid phase can move and tumble randomly. In this

state, the intermolecular attractive forces that kept a solid together are now only strong

enough to keep the liquid molecules close together. When a liquid becomes gas, the ran-

dom motion the molecules have is increased to overcome the intermolecular forces and

the molecules fnally spread out to fll any container that holds them.

7
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An important property that plays a role in distinguishing between the three states of

matter is temperature, which is a measure of the extent of molecular motion. The higher

the temperature, the lower the extent of order. By increasing the temperature, any solid

can be converted to a liquid and later to a gas.

A liquid crystalline phase occurs in some substances and in this state the substance has

some properties of both liquids and solids. Figure 2.1 shows the order in solid, liquid and

liquid crystal.

 

Cyrstalline Solid Liquid Liquid Crystal

Figure 2.1

Schematic representation of molecular order in a crystalline solid, regular isotropic liquid
and liquid crystal

2.2 Liquid crystal order

In liquid crystal, the orientational order is not nearly as perfect as in a solid. We can

defne a unit vector n called the director to be the average molecular orientation direction.
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variable, which is dependent on both space and time coordinates and

n(x, t). Each molecule makes an angle with the director denoted by θ 

which we can measure. The average angle could then be computed as a

of the amount of orientational order denoted by S (Eqn. (2.1)), which describes

the degree of order.

S average of ( 
3 
2 
cos 2θ − 

1 
2
) (2.1)

nθ nθ

  

 

    
 
 

   
 
  

  

  

    

The director is a

it is denoted by

(Figure 2.2),

measure

= 

Figure 2.2

θ denotes the angle between a molecule and the director n 

Normally in the equilibrium liquid crystal state the range of the scalar order parameter

is given by 0 < S < 1. With the change of the temperature, the material will change from

S = 1 in the crystalline state to S = 0 in the isotropic state at high temperature.

2.3 Biaxial liquid crystals

In a biaxial system there is no axis of complete rotational symmetry. Hence there

is no axis such that rotation through an arbitrary angle about that axis leaves the system
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The liquid crystal can be biaxial. Therefore to defne the state of orientation

of the liquid crystal, two perpendicular axes, n and m are required. The third one can

perpendicular to the other two. Two directors and the corresponding two

scalar order parameters can then be defned. Thus the liquid crystals with biaxial state

described by two director variables n and m (Figure 2.3) and two scalar order

and S2.

ψψψψ θθθθ

φφφφ

m

ψψψψ θθθθ

φφφφ

m

  

  

 

    

 

        

  

unchanged.

be specifed as

can be

parameters, S1 

Figure 2.3

The directors n and m in terms of Euler angles θ, ϕ and ψ 

From Figure 2.3, we can write director n as the following:

n = (cosθ ∗ cosϕ, cosθ ∗ sinϕ, sinθ) (2.2)

The director m is perpendicular to n, we can write m as the following:
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m = (sinϕ ∗ cosψ − cosϕ ∗ sinψ ∗ sinθ, −sinϕsinψ ∗ sineθ − cosϕ ∗ cosψ, sinψ ∗ cosθ) 

(2.3)

From Equations (2.2) and (2.3), the liquid crystal system could be described using fve

independent variables including θ, ϕ, ψ, S1, S2, which constitute the basis for tensor order

parameter theory.

2.4 Tensor order parameter Q 

From the previous section, we know that the liquid crystal system can be described by

fve independent variables. A 3*3 matrix can be constructed, which contains the informa-

tion for these fve variables. The 3*3 matrix can be written in the following form:

M = S1(n ∗ n) + S2(m ∗ m) (2.4)

where n, m are vectors of directors, ijth element of the product n ∗ n is ninj . The matrix

form for M :

⎡ ⎤ 
m1 m2 m3 

M = m2 m4 (2.5)m5 ⎢ ⎥⎣ 
m3 m5 (S1 + S2) − m1 − m4 

⎦ 

The tensor Q can then be defned as

Q = S1(n ∗ n) + S2(m ∗ m) − 1/3(S1 + S2)I (2.6)
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where I is the identity matrix. Note that the above defnition for Q is such that the trace of

Q is zero. The tensor Q can be written as a symmetric traceless matrix.
⎡ ⎤ 

q1 q2 q3 

Q = (2.7)q2 q4 q5 ⎢ ⎥⎣ 
q3 

⎦
q5 −q1 − q4 

The Q tensor theory is used in our work to investigate the dynamics of LCs in the presence

of nanoparticles and biological macromolecules.

2.5 Defect structure in liquid crystals

In previous sections, we have given the defnition for the director at a point, which is

the direction of preferred orientation of the molecules in the neighborhood of that point.

Defect could be defned as the region where the director changes abruptly. There are

several types of defects. In this work, we study two of them. The frst is a point defect

called a dipolar or satellite defect. The second is a quadrupolar or Saturn ring defect

(Figure 2.4).

An abrupt change in the direction of preferred orientation always implies severe distor-

tion of the director confguration in the vicinity of the defect. The homeotropic anchoring

at the surface of the particles (the liquid crystal molecules are oriented perpendicular to the

surface of the particles) creates a topological mismatch of the director feld between the

director on the particle surface, which generates the defects around the particles in LCs,
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and the uniform director at large distances. The structure of defects plays an important

role in the optical characteristics of the LC based sensors investigated in the present study.

Figure 2.4

Sketches of the satellite defect and Saturn-ring defect (reproduce from [2]).

2.6 Coarse-grained method

The state of a liquid crystal system can be specifed using a microscopic description

involving the orientation of individual molecules. This approach limits the size of the

system that can be simulated. In contrast, in a coarse-grained framework, the state of

the system at a point in space and time is defned based on the average orientation of a

large number of molecules. The spatial resolution associated with this meso scale, coarse-

grained model is of the order of a few nanometers or larger. A coarse grained description,

such as the one used in the Q-tensor based model of this study, enables simulation of
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phenomena encompassing large length and time scales compared to a detailed molecular

description.

LC orientation in the absence of LC orientation in the presence of
analyte analyte (pesticide)

Figure 2.5

LC sensor schematic

2.7 Applications of liquid crystals

The most common application of liquid crystalline substances is in display devices

(LCD, liquid crystal display). Other applications include temperature measurements and

optical imaging. Recently, its application in bio-sensor has attracted wide interest [8, 10].

In display devices, the liquid crystal orientation is determined by the applied electric feld.

However, for the sensor system in the present study, the orientation of the liquid crystal

is infuenced by the concentration of a specifc analyte (target compound that needs to be

detected). The use of a liquid crystal flm adjacent to a surface involving nanoscale cor-

rugations can enable detection of different biological substances (e.g. proteins, viruses).
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Operating Principle: The LC based sensor is designed such that the binding between the

receptor and the targeted analyte is energetically more favorable compared to the receptor-

LC binding. Hence, introduction of the analyte forces the liquid crystal to assume a new

orientation, which is determined in part by the nanostructured surface, and this change in

orientation can be easily visualized (Figure 2.5).

Some of the advantages of this class of sensors are as follows:

1. This simple, cost-effective, portable sensor platform is a promising alternative to
present methods that require expensive lab-based instrumentation and highly trained
personnel.

2. Attaining high sensitivity (detection of few parts per billion) and selectivity (ability
to distinguish between similar compounds) is feasible.

3. The chosen liquid crystal based sensor platform, which utilizes recent advances
in fabrication of nanostructured surfaces, has been demonstrated to detect a wide
range of substances including organophosphates (pesticides & nerve gases are orga-
nophosphates), proteins and viruses.
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CHAPTER III

SIMULATION METHODS

Three-dimensional model of the sensor used in simulation

consider a model for the sensor in which nanoparticles or biological macro-

molecules are suspended in a nematic liquid crystal medium confned between two parallel

This mimics the geometry of the LC based sensors in the experiments. Figures

3.1 (a) and (b) show sensor model containing spherical particles, and a detailed geometry

biological macromolecule, respectively.

3.1

We

surfaces.

for a

(a) (b)

Figure 3.1

Schematic view of a model LC sensor: (a) the nanoparticles are modeled as spherical
particles; (b) a biological macromolecule is specifed using detailed geometry. Surface

meshes for the top and bottom boundaries are also shown

16
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In the absence of particles, long-range uniform orientation occurs throughout the liquid

crystal flm. When the analyte of interest (e.g. a protein or a virus) is bound to the interface

boundary, this can destroy the long-range order through the occurrence of topological

defects and facilitate optical detection. The director description is often used to describe

the structure of the nematic liquid crystal at micrometer length scales around the particles.

However, in the design of optical biosensors, the typical targets for the biosensors such

as proteins have sizes on the order of 10 to 100 nanometers. In addition, the director

description is not appropriate for study of the region close to the core defect, where the

average molecular orientation changes abruptly. A better approach towards description of

the defect of structure of the core defect relies on the tensor parameter [8]. It also provides

an accurate representation of the structure of defects and director down to length scales of

a few molecular diameters [8,14,22]. Therefore coarse-grained method in terms of tensor

order parameter based on a dynamical feld theory is used to track the dynamics of the

LC and the immersed particle is treated as a solid object [13]. The tensor order parameter

(details discussed in section 2.4) is a symmetric traceless matrix Qij =< uiuj − 1/3δij > 

which contains all the information about the nematic state of LCs and can be written as

given in Eqn. (2.7). The brackets < A >= 
R 

Aψ(u)du, (A = uiuj − 1/3δij) denote

an average over all possible orientations on the unit sphere. The tensor Q(r) defnes a

coarse-grained order parameter that represents the local average at point r. It includes fve

independent variables. The optical signature of the system depends upon the relaxation

of the LC after the particles get adsorbed at the interface boundaries. This relaxation
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process of the liquid crystal could be described by an unsteady partial differential equation

for the tensor order parameter that includes both short-range and long-range order elastic

effects. The equilibrium properties of the LC could be described by Landau-De Gennes

free energy [5].

The Beris-Edwards formulation [3] was employed here to obtain the time evolution of

the coarse-grained tensor order parameter. The formulation is:

∂Q 
· 

∂F 1 ∂F 
= Γ − + Tr( )I

¸ 
(3.1)

∂t ∂Q 3 ∂Q 

The coeffcient Γ is given by Γ = 6D∗/ [1 − 3Tr(Q2)]
2 , where D∗ is the rotational dif-

fusion coeffcient for the LC. The free energy F of the LC includes two contributions,

the long-range and the short-range interaction contributions, which can be de described as

follows:
Z

F = Fs + Fedr (3.2)
v 

The long-range contribution is of the form:

Z 
L1

Fe = dr 
2

(∂αQβγ )
2 (3.3)

where L1 is a material-specifc elastic constant. A short-range elastic contribution of the

form:

Z ½
A 

µ 
U AU AU 

¶¾
Fs = dr (1 − )Qαβ Qαβ − Qvγ QvαQαγ + (Qαβ Qαβ)2 (3.4)

2 3 3 4 

The parameter A is to control the relative magnitude of the two contributions. The relative

magnitude between two contributions Eqn. (3.3) and Eqn. (3.4), depends on the liquid
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crystal of interest. For low molecular weight LCs, long-range interactions are dominant,

while for polymetric LCs, short-range interactions are dominant. U is the dimensionless

nematic potential strength. The characteristic length could be defned as ξ = 
p

18L1/AU 

and it provides a characteristic length scale for changes of the order parameter. At the

isotropic-nematic frst-order transition, ξ is about several molecular lengths, with ξ 20nm

[16]. The characteristic time scale can be defned as τ0 = |6DA(1 − U/3)|−1 [16]. From

equations (3.1) to (3.4) we can obtain the following equation:

∂Q 6D 
= − 

∂t (1 − 3(Q : Q)/2)2 

U 1 {A(1 − )Q − AU [Q • Q − (Q : Q)δ] + AU(Q : Q)Q − L1r 2Q} (3.5)
3 3 

The quantity Q should satisfy the traceless condition Tr(Q) = 0. The eigenvalues of the

matrix Q are described by the following diagonal matrix:
⎡ ⎤ ⎡ 

2S 

⎤ 
λ1 0 0 

3 0 0 

0 λ2 0 = 0 Sb−S 0 (3.6)
⎢ ⎥ ⎢ 3 ⎥⎣ 

0 0 λ3 

⎦ ⎣ 
0 −Sb+S 

⎦
0 

3 

where S denotes the nematic scalar order parameter and Sb denotes the biaxiality. The

choice for the ordering of the eigenvalues is such that λ1 ≥ λ2 ≥ λ3. We can obtain the

following:

S = 3/2λ1 (3.7)

Sb = 3/2λ1 + 3λ2 (3.8)
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The eigenvector associated with the highest eigenvalue λ1 = 2S/3 corresponds to the

generalization of the director n. At the bounding surfaces, we assume Q to be uniaxial

and of the form

Q = Seq(nn − δ/3) (3.9)

where n is the preferred orientation of the strong anchoring at the surfaces. The equilib-

rium scalar order parameter Seq is obtained from the Doi theory [19].

Seq = (1 + 3
p

1 − 8/3U)/4 (3.10)

The choice for the orientation of the coordinate system is such that the two parallel bound-

ary surfaces that represent the interface boundaries for the LC medium (the top & bottom

surfaces for which surface meshes are shown in Figure 3.1) are perpendicular to the z 

direction (z axis is along vertical direction). The director is specifed along a particular

orientation (this can be parallel or perpendicular to the interface boundary surface) at the

interface boundary. Periodic boundary conditions are imposed in the x and y directions.

We consider the case of strong homeotropic anchoring (i.e. LC orientation at the bound-

ary of the nanoparticle or biological macromolecule is along the unit vector normal to the

surface). For the initial conditions, the nematic scalar order parameter is set to the equi-

librium value Seq (see Eqn. (3.10)) throughout the domain and the corresponding initial

tensor Q in the simulation box is assumed to be uniaxial and is given by:

Q = Seq(nn − δ/3) (3.11)
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The time evolution of the state of the liquid crystal medium is obtained by the numerical

solution of Eqn. (3.5) using an explicit, cell-centered, fnite volume scheme with a second

order Runge-Kutta scheme for time integration. The implementation of the numerical

solution is through a rule-based framework (LOCI framework [17]) that is well suited for

effcient solution of continuum models in large scale parallel computing clusters.

Once the solution for tensor order parameter Q is given at a particular location, by

calculating its eigenvalues and eigenvectors, the local state of the LC could be described

in terms of the scalar order parameter S (Eqn. (3.7)), biaxiality Sb (Eqn. (3.8)) and director

orientation (the eigenvector corresponding to the maximum eigenvalue λ1).

The system evolves starting from the specifed initial confguration and attains a steady

state in the fnal equilibrium confguration. One choice for the initial condition is specify-

ing the values for the Q tensor corresponding to a uniaxial state with uniform orientation of

the corresponding director in a specifed direction throughout the computational domain.

Changes in initial conditions in this work are introduced through fuctuations in the orien-

tation of the director of different strength or magnitude. A parameter ² is introduced such

that when it is zero, this corresponds to uniform orientation of the director everywhere

in the liquid crystal medium and when the parameter is 1.0, this corresponds to totally

random orientation in the different cells. It was observed that ² had an effect on conver-

gence and that when ² increases beyond a certain value, convergence of the simulations to

a steady state stalls. It has been verifed that for different choices of the parameter ² (typi-

cally with ² ≤ 0.5), the same converged steady state solutions are obtained. For this work
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simulations have been performed with at least two different values of ² and essentially the

same results have been obtained. Such simulations are used to account for variations in

initial conditions.

The convergence to steady state can be monitored based on the change in the residual in

the numerical computations. As the residual a quantity that numerically drives the change

in Q with time in the numerical solution procedure decreases continuously, convergence

towards a steady state solution is obtained. Suffcient number of time steps have been used

to ensure that the obtained solution is well converged. The total number of time steps used

in different cases to ensure convergence is of the order of 105 . Most of the changes occur

during the earlier portion of the simulation duration and the rate of decrease of the residual

is much smaller towards the end, as expected. Depending on the size of the system and

time required for convergence simulations have been performed using different number of

processors (e.g. 4 to 64 processors).

3.2 Parameters for the simulations

In this work, a set of parameters was chosen to represent a low molecular weight

LC, which corresponds to the physical properties of 5CB : A = 1, L1 = 0.55, D∗ = 

0.35, and U = 6. The corresponding scalar order parameter Seq = 0.81 . The

characteristic length scale for variation of properties in the liquid crystal given by ξ = 
p

18L1/AU = 0.856 accordingly. The characteristic time in this work, which is defned

as τ0 = |6DA(1 − U/3)|−1 , is of the order of 100 ns. Three-dimensional unstructured
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meshes are used to describe the region occupied by the liquid crystal medium surrounding

the spherical regions that model the biological molecules.
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CHAPTER IV

RESULTS AND DISCUSSION

This chapter presents results obtained from simulations using several examples. Sub-

stances contained within the LC medium have been modeled as spherical particles repre-

senting nanoparticles in several examples. However cases that contain detailed geometric

modeling for a biological macromolecule have also been included.

4.1 Defect structures around one spherical particle

To understand the interaction between the particles, it is important to know the liquid

crystal ordering near one isolated particle. In this section, we will study the dynamics of

a liquid crystal around one spherical particle including the topological defects around the

particle, the change from satellite defect to Saturn ring defect, and the infuence of the size

of the particle upon the satellite defect. This will provide us with a general understanding

of the defect structure for one particle in a LC medium.

4.1.1 Topological defects around one particle

This example shows the simulation results for one spherical particle immersed in the

LC in steady state. The outer boundary corresponds to a cubic domain of length of 6 units.

The radius of the sphere is 1 unit. The director is initially aligned along the x direction with

24
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n = (1, 0, 0). The chosen mesh contains 170,623 computational volume elements. After

220,000 computational time steps, the system is very well converged to a steady state. The

results were analyzed to obtain scalar order parameters (Figure 4.1), the biaxiality map

(Figure 4.2), director (Figure 4.3), director streamlines (Figure 4.4), order parameter with

streamline (Figure 4.5), and iso-surface for scalar order parameter (Figure 4.6).

From these images, we can observe that in the steady state solution a Saturn ring

defect is formed close to the sphere (Figure 4.1 & 4.6) and is located on the equatorial

y − z plane. From the director orientation (Figure 4.3) and also through the director

streamline image (Figure 4.4), it is seen that for regions far away from the sphere, the

director orientation is approximately uniform and is along the x-axis. This indicates that

the ring defect does not force long-range distortions in the director feld. Its core region is

located very close to the sphere’s surface and the director distortion disappears quickly in

the bulk of the LC. This is in agreement with the quadrupolar nature of the defect: far from

the particle the director deviation angle has asymptotic behavior β (R/r)3sin2θ (refer to

Figure 4.7 for the defnition of β, r, θ; R is the radius of the sphere and r is the radial

coordinate in the spherical coordinate system) [2]. Figure 4.2 depicts contour plots for

the biaxiality parameter and shows that the liquid crystal in the region close to the sphere,

and near the defect core, is strongly biaxial, and in the area far away from the sphere, it

is uniaxial. Comparison of fgures 4.1 and 4.4 shows the relationship between the scalar

order parameter and the director. The scalar order parameter attains the minimum value in

the region where the director changes abruptly. Comparing fgures 4.1 and 4.2, we see that
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region where the order parameter S has the minimum value is also the region where

the biaxiality has the maximum value.

Figure 4.1

Scalar order parameter contour in x − y plane with z 0 

 

      

     

the

= 

Figure 4.2

Biaxiality contour in x − y plane with z = 0 
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Figure 4.3

Director map in x − y plane with z = 0 

Figure 4.4

Director order streamlines x − y plane with z = 0 
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Figure 4.5

Order parameter map with director streamlines in x − y plane with z = 0 

Figure 4.6

Iso surface for scalar order parameter when S = 0.28 
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Parameter profles and biaxiality profles along the radial direction are shown in fgures

4.8 and 4.9. The shape of these profles in general refects the typical structure of the core:

of the core has lower order than the bulk and the core region extends over a

molecular lengths [2]. As mentioned before, using order parameter profles one can

defne the position of the Saturn ring as the location of the minimum of the scalar order

It also can be defned as the location of the maximum of the biaxiality (refer to

fgures 4.1 & 4.2). From the order parameter and biaxiality parameter profles, we can see

that the defect core is located at about (r −R) ≈ 0.25. In this case, the radius of the sphere

is 1 unit. The ring defect radius ar ≈ 1.25 and then the ratio (ar − R)/R ≈ 0.25. This is

in good agreement with the theoretical results for which the corresponding ratio is about

0.25 [15]. The dependence of this ratio upon other parameters will be discussed later.

θ

r

β

n

x

θ

r

β

n

x

   

       

the center

few

parameter.

Figure 4.7

Coordinate system and defnitions for different symbols for a case containing a single
spherical particle
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Figure 4.8

Scalar order parameter profles for the ring defect along the directions θ = 0, π/2 (θ has
the same defnition as in Figure 4.7). The minimum of the order parameter defnes the

position of the disclination core. R is the radius of the sphere. r is the distance from the
center of the sphere
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Figure 4.9

Biaxiality profles along the direction θ = 0, π/2. The peak of the biaxiality is centered on
the defect core and coincides with the minimum of the order parameter in Figure 4.8. R 

is the radius of the sphere. r is the distance from the center of the sphere
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4.1.2 Evolution of the defect structure

In this section, we will study how an initial confguration corresponding to a satellite

defect in the vicinity of a colloidal particle evolves in time and results in a saturn ring type

defect. In this case, one spherical particle was centered in the cubic domain with 4 units

length. The radius of the particle is 0.2 units. The mesh has 72,000 volume elements.

The initial condition for the director is specifed in terms of an approximate analytical

function [2] in the following form:

β(r, θ) = θ − arctan sinθ 
1/f (r)+cosθ 

1/f(∞) = 0 (4.1)

f(as) = 1 

as is the distance between the defect core and center of the sphere. In this case as ≈ 1.4R 

(variables β, θ, r are defned in Figure 4.7). f(r) is supposed to be a unique function of r 

which does not depend on the angle θ.

Figures 4.10 - 4.12 show the variation in the scalar order parameter and the director

streamlines in the x − y plane for the initial, intermediate and fnal states. Because of

the resolution limitation, the defect structure is not symmetric about a vertical axis but

the resolution is adequate for observing the expected transient and converged solution

patterns. From these images, we can observe the transition process from satellite defect to

Saturn ring structure. The initial structure corresponds to a satellite defect (Figure 4.10).

After about 30,000 computational time steps, this becomes an off-center Saturn ring (i.e.

the center of the Saturn ring does not coincide with center of the spherical particle, see



www.manaraa.com

33

Figure 4.11). This off-center ring gradually approaches the equatorial plane and at around

200,000 computational time steps, the converged structure corresponding to a Saturn ring

(this is not off-center) around the particle (Figure 4.12) is obtained.

(a) (b)

Figure 4.10

Director and scalar order parameter map of the satellite defect in x − y plane with z 0.
(b) is a magnifed view of the region close to the sphere

     

   
 

= 

(a) (b)

Figure 4.11

Director and scalar order parameter map for the off-center ring confguration in x − y 
plane with z = 0. (b) is a magnifed view of the region close to the sphere
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(a) (b)

Figure 4.12

Director and scalar order parameter map for the saturn ring defect in x − y plane with
z = 0. (b) is a magnifed view of the region close to the sphere

Unlike some continuum approaches for solution of liquid crystal orientation involving

minimization of energy through an optimization procedure, the present approach involves

obtaining a time accurate solution for the evolution of the system. For this approach, in

addition to the converged steady state solution, which corresponds to a minimum energy

confguration, one also obtains intermediate states during the evolution of this system and

these are of physical signifcance. The system fnally converges with a Saturn ring de-

fect. This is in accordance with the results observed in another study that uses detailed

molecular dynamics based simulations [2] (see Figure 4.13). In that study, it is shown that

under certain conditions, an initial confguration corresponding to a satellite type defect
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(Figure 4.13.(a)) in the vicinity of a colloidal particle evolves in time, becomes off-center

ring (Figure 4.13.(b)), and fnally results in a Saturn ring type defect (Figure 4.13.(c)).

(a) (b)

(c)

Figure 4.13

Director map of: (a) satellite defect; (b) off-center ring defect; (c) Saturn ring defect;
Radius of sphere equals 15 units. (These results are reproduced from [2] and were

obtained using MD simulations.)
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From the previous section, we know that the fnal confguration is a Saturn ring struc-

ture. It seems that the Saturn ring is a stable confguration compared with satellite defect

and off-center ring. However, it is true only if the size of the particle is very small. In

chapter III we have mentioned the characteristic length in our simulation is about 0.856.

One unit of length is about 20nm. Thus in this case, the radius r = 0.2 which corresponds

to about 4.7nm. In the previous case, r = 1 which corresponds to about 23.5nm. The Frank

theory predicts that the Saturn ring loses stability at R = 720nm [26 - 27]. Thus under R =

720nm, Saturn ring is stable. When R > 720nm, then independent of the initial condition,

the fnal solution should correspond to satellite defect. Since verifying this requires use

of a particle size that is signifcantly large and requires a large amount of computational

time, this verifcation has not been included in this study.

4.1.3 Effect of particle size

In section 4.1.1, it was mentioned that the ratio (r − R)/R is not fxed. This ratio

depends on the radius of the sphere (r here points to the distance from the core defect to

the center of the sphere; R is the radius of the sphere). Simulations have been performed

for several sizes of the spheres and fgures 4.14 - 4.17 show the variation of the scalar

order parameter along y direction. For cases with R = 0.2, 0.5, 1.0 and 6.0, the ratio

(r − R)/R is about 0.35, 0.3, 0.25. and 0.15, respectively. The bigger the radius, the lower

the value of the ratio (r − R)/R is. This may be due to the fact that the energy associated

with the Saturn ring defect increases when the length of the Saturn ring increases. In
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three dimensions, the ‘line tension’ associated with the Saturn ring defect has the effect of

reducing the length of the disclination [21].

4.2 Annihilation of two disclination lines

In this section, we will study how one spherical particle accompanied by its topo-

logical defects interacts with neighboring disclination lines. Simulation results for this

problem are available from another study [9] for comparison. Initially, the director profle

(nx, ny, nz) = (cosφ, 0, sinφ) is given by the superposition of two disclination lines of

opposite charge, and φ is given as follows:

1 −1 
µ

x − x 
¶ 

1 −1 
µ

x − x+ 
¶

φ = − tan + tan (4.2)
2 z − z 2 z − z+ 

where (x , z ) and (x+, z+) respectively correspond to the location of the two -1/2 and +1/2

disclination lines. In our simulations, two disclination lines are separated by a distance

dx=3.2 units and are located at the same vertical coordinate x along y direction. In this

case, the simulation geometry we use is the same as what we use in section 4.1.2. The

radius here is 0.2 units.

Figures 4.18 - 4.21 show four different time steps to describe the process for the an-

nihilation of the two disclination lines and how they interact with the topological defects

associated with particles. As indicated in Figure 4.18, at the beginning of the simulation,

the two-disclination lines in y −z plane are far away from the particle and the director feld

in the neighborhood of the particle is quasiuniform. There is a Saturn ring generated in

the x − y plane. During the annihilation of two disclination lines, gradually they get close
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to each other (Figure 4.19). When the two lines interact with the defect that accompanies

the particle, the lines are distorted near the particle (Figure 4.20)). At last, as the disclina-

tion lines annihilate, the fnal confguration corresponds to a particle surrounded by a new

Saturn ring in the y − z plane (Figure 4.21). The Saturn ring has rotated by 90 degrees

(compare Figure 4.18 and 4.21). From this case, we study the effects of one particle on the

dynamic behavior of disclination lines. The results from this unsteady simulation compare

well with results from another numerical study [9]. This provides confdence in the ability

of the present numerical approach for not only obtaining the expected steady state but also

for capturing the unsteady dynamics as expected.

   

  
   

Figure 4.14

Scalar order parameter profle for the ring defect along the direction θ = π/2 when R =
0.2 (the ratio (r − R)/R = 0.35)
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Figure 4.15

Scalar order parameter profle for the ring defect along the direction θ π/2 when R 
0.5 (the ratio (r − R)/R 0.30)

  
    

  
   

= =
= 

Figure 4.16

Scalar order parameter profle for the ring defect along the direction θ = π/2 when R =
1.0 (the ratio (r − R)/R = 0.25)
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Figure 4.17

Scalar order parameter profle for the ring defect along the direction θ π/2 when R 
6.0 (the ratio (r − R)/R 0.15)

  
    

  
    

  

= =
= 

(a) (b)

Figure 4.18

Annihilation of two disclination lines with a particle centered in the cube. T = 30k: (a)
scalar order parameter in y − z plane with x = 0; (b) iso-surface for scalar order

parameter where S = 0.32 
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(a) (b)

Figure 4.19

Annihilation of two disclination lines with a particle centered in the cube. T 300k: (a)
scalar order parameter in y − z plane with x 0; (b) iso-surface for scalar order

parameter where S 0.28 
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(a) (b)

Figure 4.20

Annihilation of two disclination lines with a particle centered in the cube. T = 450k: (a)
scalar order parameter in y − z plane with x = 0; (b) iso-surface for scalar order

parameter where S = 0.28 
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(a) (b)

Figure 4.21

Annihilation of two disclination lines with a particle centered in the cube. T = 600k: (a)
scalar order parameter in y − z plane with x = 0; (b) iso-surface for scalar order

parameter where S = 0.32 

4.3 Interaction between spherical colloids

In previous sections, we have studied the defect structure for one spherical particle

immersed in LCs, and how one spherical particle interacts with the disclination lines in

LCs. In this section, we will study the interactions between spherical particles dispersed

in LCs.

4.3.1 Two particles at different angles of orientation

In this case, two spherical particles are located in LCs and different values are chosen

for the angle between the director confguration in the far feld (along x direction in this

case) and the line connecting the centers of the spheres (e.g. 0, 30, 60 and 90 degrees).
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The outer boundary corresponds to a cubic domain of length 24 units. The radius of each

of the spheres is 3 units and the distance of separation between the centers of the spheres

is 10 units which is 5/3rd of the diameter. The director is initially aligned along the x

direction with n (1, 0, 0). The chosen mesh contains about 214,000 computational

volume elements.

Figures 4.22 4.25 show the pattern of streamlines of the director and variations in the

order parameter. The preferred orientation in the areas between the spheres is along the

line connecting the sphere centers. These are in good agreement with the corresponding

results obtained in a study using molecular dynamics simulations [1] (see Figure 4.26).

 

    

  

= 

-

(a) (b)

Figure 4.22

Interaction between spheres with angle = 0 degree: (a) streamline and scalar order
parameter; (b) iso-Surface when S = 0.49 
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(a) (b)

Figure 4.23

Interaction between spheres with angle 30 degree: (a) streamline and scalar order
parameter; (b) iso-Surface when S 0.49    

  

=
= 

(a) (b)

Figure 4.24

Interaction between spheres with angle = 60 degree: (a) streamline and scalar order
parameter; (b) iso-Surface when S = 0.49 
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(a) (b)

Figure 4.25

Interaction between spheres with angle = 90 degree: (a) streamline and scalar order
parameter; (b) iso-Surface when S = 0.49 

From the iso-surface images for these cases, it is seen that the distance between these

two particles is not small enough to give rise to interaction between the defect patterns of

these particles. Such interactions are studied in the next section.

4.3.2 Interaction between two spheres

In this case, two spherical particles are located in the LC with an angle of 90 degrees

between the director confguration in the far feld and the line connecting the centers of

the spheres. The outer boundary corresponds to a cubic domain of length 15 units.

The radius of the spheres is 2.5 units and the distance of separation between the centers

of the spheres is 6 units. The director is initially aligned along the x direction with n = 

(1, 0, 0). The chosen mesh contains 56,771 computational volume elements.
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Figure 4.26

Local nematic order parameter S(r) around the macroparticles. The separation is
d = 12B with (clockwise from top left) angles θ = 0 degree, 30 degrees, 60 degrees and

90 degrees. Super-imposed on the map are streamlines of the local director feld n(r) 
(fgure reproduced from [1])
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Figures 4.27 4.31 show the converged solution for this case in terms of iso-surfaces

and contour plots for the scalar order parameter and in terms of the director orientation. In

this example the Saturn ring defect patterns associated with the two spheres interact with

each other and a third ring that is perpendicular to the two Saturn rings around the particles

is seen in the solution. The occurrence of this defect structure involving three rings has

also been observed in other numerical studies [10, 14]. Reduction in the distance between

the particles causes a signifcant change in the structure of the defects.

  

-

(a) (b)

Figure 4.27

Iso-surface for the scalar order parameter where S = 0.56 from two perspectives (a) and
(b)
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Figure 4.28

Contour maps for scalar order parameter in y − z plane with x = 0 

Figure 4.29

Contour maps for director in y − z plane with x = 0 
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Third ring 
position

     

     

Figure 4.30

Contour maps for scalar order parameter in x − z plane with y = 0 

Figure 4.31

Contour maps for director in x − z plane with y = 0 
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4.4 Defect structures with the spherical particles adsorbed on substrates

In previous sections, all the cases are studied when the spherical particles are centered

in the cubic regions, which are far away from the solid walls. In this section, we will study

the defect structure when the particles are adsorbed on the interface boundary between the

LC medium and the solid walls. This assists in studying the ligand-receptor binding at the

interface boundary and is more suitable for the actual confguration of the sensor. Two

point correlation function is used to study the time evolution of dynamics in LCs and the

effects of the concentrations of the spheres. Optical pictures are also included.

In this section, two geometries are considered. In the frst geometry (Figure 4.32.(a);

denoted as 2*2 case later), there are a total of eight spheres with a 2*2 array of spheres in

contact with the top solid wall (interface boundary) and another 2*2 array in contact with

the bottom solid wall. The radius of each sphere is 2.5 units and the outer boundary

corresponds to a cubic domain of length 24 units. The chosen mesh contains 56,771

computational volume elements. In the second geometry (Figure 4.32.(b); denoted as

4*4 case later), there are 32 spheres with one 4*4 array of spheres in contact with the top

and bottom solid walls each. The radius is 2.5 units and the outer boundary corresponds

to a cubic domain of length 24 units as in the 2*2 case. Thus the 2*2 and 4*4 cases

have different concentrations of packing of the spheres at the interface boundaries. The

chosen mesh for the 4*4 case contains 662,315 computational volume elements. In the

simulations for these two cases the parameter ² (this controls the extent of randomness

associated with the director orientation in the initial condition) is chosen as 0.5 (0 ≤ ² ≤ 1,
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refer to chapter III). The computation time required to obtain converged solutions was not

signifcantly different for the cases with ² 0.5 and ² 0.0.  

 

 

 

= =

(a) (b)

Figure 4.32

Geometry: (a) 2*2 case; (b) 4*4 case

Figures 4.33 - 4.36 show the variation of the scalar order parameter after convergence

to a steady state. Some observations about these solutions are as follows:

• For the 2*2 case, the converged solutions contain disclination lines (regions char-
acterized by abrupt change in orientation) in the form of a Saturn ring surrounding
each spherical particle.

• For the 4*4 case, the presence of adsorbed particles causes changes in the order
parameter throughout the interface boundaries. Owing to the short distance between
the spheres in this geometry, the defect patterns associated with the spheres interact
with each other (this topic has been discussed in the previous section).

• The director orientation is quasiuniform (along x-direction) except in the vicinity
of the spherical particles, where occurrence of topological defects dominates the
solution.
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(a) (b)

Figure 4.33

Cut surface for the contour of scalar order parameter in x − y plane passing through the
center of the spheres: (a) 2*2 case; (b) 4*4 case

   

   

(a) (b)

Figure 4.34

Cut surface for the contour of scalar order parameter in x − z plane: (a) 2*2 case, the cut
plane is close to the spheres; (b) 4*4 case, the cut plane is between the pair of spheres
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(a) (b)

Figure 4.35

Cut surface for the contour of scalar order parameter in y − z plane passing through the
center of the spheres: (a) 2*2 case; (b) 4*4 case

   

   

(a) (b)

Figure 4.36

Iso-Surface: (a) 2*2 case with S = 0.42; (b) 4*4 case with S = 0.34 
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One way to quantify the overall state of the whole system and its time evolution is

through a two point correlation function. This provides an average measure of the extent

to which properties at one point in the computational domain are close to the properties

at a second point as a function of the distance between the two points. This two-point

correlation function is defned as follows:

R xmax R ymax 
Tr[Q(xr + x, yr + y, z, t)Q(xr, yr, z, t)]dyrdxrxmin ymin 

C(x, y, z, t) = R xmax R ymax 
Tr[Q(xr, yr, z, t)]2dyrdxrxmin ymin 

Figures 4.37 - 4.39 show the evolution of the correlation function c(x, y, z) at different

times for the 2*2 case. To provide an idea about the variation of this function in space

at steady state, plots have been included for cut section at different regions. From these

images, we can observe the following:

• When t = 0 (initial condition, see Figure 4.37), we see that the value of the cor-
relation function is low everywhere, which means director is not uniform. This is
because the chosen initial condition does not correspond to uniform orientation. But
as we have mentioned before, it is not a completely random initial condition, and
there is still some correlation between properties at different points. For a complete
random initial condition (e = 1), the value for the correlation function should be
close to zero everywhere.

• For t = 5000 steps (Figure 4.38), the value of the correlation function increases and
this suggests that there is a tendency for the director orientation at different regions
to approach the preferred orientation in the far feld.

• Finally, when the system is in steady state (Figure 4.39), we can fnd the value of
correlation function is close to one in some regions (4.39.(d)) and is low in other
regions (Figure 4.39 (b) & (c) ). It means that the surfaces impose a quasi uniform
nematic order in the whole domain, which is slightly perturbed by the presence of a
few topological defects attached to the particles.
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Figure 4.37

Contour map for correlation function c(x, y, z) for 2*2 case when t = 0 computational
time step

Note that as a consequence of the use of periodic boundary conditions in x and y 

directions, the correlation function in these directions is defned in a range corresponding

to half the length of the physical domain in these directions (i.e. for 12 units of length

instead of 24 units of length).

The time evolution for the 4*4 case is similar to that obtained for the 2*2 case discussed

above. To study the effects of concentration of spheres, we can compare the correlation

function obtained for the 4*4 case at steady state (Figure 4.40) with corresponding results

for the 2*2 case (Figure 4.39).
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Figure 4.38

Contour map for correlation function c(x, y, z) for 2*2 case when t = 5, 000 
computational time steps

For both the cases, except at regions close to the spheres, the director orientation is

close to the orientation in the far feld. In the regions close to the spheres, the value

for correlation function is lower in 4*4 case than in 2*2 case. This shows that as the

concentration of particles increases, the nematic order is perturbed more by the presence

of topological defects. At a critical concentration, no long-range uniform nematic order is

observed [7]. A systematic study of the behavior of the sensor at several concentrations of

the analyte is a topic of interest in future studies.
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(a) (b)

(c) (d)

Figure 4.39

Correlation function for 2*2 case when t = 1000, 000 computational time steps: (a)
c(x, y, z) in the whole domain; (b) a cut plane section in x − y plane of (a) passing
through the center of the spheres; (c) a cut section in x − y plane of (a) for the areas
touching the spheres; (d) a cut section in x − y plane of (a) in the center of the cube
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Note that Figure 4.40.(c) shows some periodic pattern in x and y direction for two point

correlation function. This is because of the special arrangement for the array of spheres

(the radius of the spheres, the distance between the pair of spheres are all same), in which

each of spheres can be viewed with the periodic boundary condition in x and y direction.

Figure 4.41 shows a plot of the optical pictures (obtained by plotting the quantity

(nxny)
2 where nx and ny are x and y component of the local director) for the 2*2 and

4*4 cases. This quantity is related to the intensity of light passing through the sensor. The

optical pictures indicate a quasi long-range uniform order perturbed to different extents by

the topological defects attached to the particles in these two cases.

4.5 Defect structure for one biological macromolecule

Till this stage the substances present within the LC medium in the sensor have been

modeled as spherical particles. In this section, we focus on the development for a frame-

work that can handle cases involving complex three-dimensional geometries with particu-

lar emphasis on modeling the presence of biological macromolecules.

4.5.1 Generation of the geometry for macromolecule

In this work, based on the relevance for clinical applications of biosensors, Immuno-

globulin G (IgG, a protein that acts as an antibody), has been selected as the sample bi-

ological macromolecule. The stages in the construction of the surface mesh to represent

IgG are illustrated in Figure 4.42. Firstly, the PDB (protein data bank) fle for human

Immunoglobulin G was chosen (Figure 4.42.(a)).
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(a) (b)

(c) (d)

Figure 4.40

Correlation function for 4*4 case when t = 400, 000 computational time steps: (a)
c(x, y, z) in the whole domain; (b) a cut plane in x − y plane from (a) passing through the
center of the spheres; (c) a cut plane in x − y plane from (a) touching the spheres; (d) a

cut plane in x − y plane from (a) passing through the center of the cube
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(a) (b)

(c) (d)

Figure 4.41

Nematic ordering in the presence of particles adsorbed at the interface boundaries:
optical picture in steady state. Cut surface passing through the center of the spheres. (a)
2*2 case in y − z plane; (b) 2*2 case in x − y plane; (c) 4*4 case in y − z plane; (d) 4*4

case in x − y plane
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Secondly, a preliminary surface mesh with triangular faces was constructed [23] (Fig-

ure 4.42.(b)). Thirdly, remeshing of the surface mesh (Figure 4.42.(c)) was performed to

eliminate regions characterized by signifcantly higher resolution compared to the average

resolution in adjacent regions [27]. Finally, Laplacian algorithm was used to smooth the

surface mesh (Figure 4.42.(d)). The surface mesh created was used as an internal boundary

for the construction of a volume mesh that represents the physical region occupied by the

liquid crystal medium surrounding the macromolecule. Figure 4.43. shows a cut-section

of the volume mesh in the vicinity of the IgG and illustrates the variation in resolution

used (high resolution close to the IgG, low resolution in the far feld region). The state

of the liquid crystal is computed in the volume mesh. The length of the cubic domain is

3.2 units and the number of computational cells is about 785,000 computational elements.

The coordinates in the PDB fle are in Angstrom units and the reference length for the

present study is taken as 20nm or 200 Angstrom. Hence the coordinates from the PDB fle

have been scaled by a factor of 200 (1/200).

4.5.2 The defect structure for one IgG at the center of cube

Fig. 4.44 shows the defect structure for one IgG macromolecule in the center of the

cubic domain through plots for iso-surface, scalar order parameter and biaxiality parame-

ter. From these images, we can observe that there is a defect structure around the macro-

molecule, (this represents a sudden change in the orientation of the director) characterized

by a low value for the scalar order parameter and a high value for biaxiality parameter.
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(a) (b)

(c) (d)

Figure 4.42

Construction of an unstructured mesh to represent a biological macromolecule. The
sequence of successive stages is shown in (a) to (d)
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Figure 4.43

Cut section of volume mesh

The defect is close to the IgG structure and in a plane perpendicular to the far-feld-

director. In the far-feld, the director is uniform and along the preferred orientation (x-

axis). It shares the similarity in this aspect with the Saturn ring confguration for the case

with a spherical particle (Saturn ring confguration is stable in a plane perpendicular to the

far-feld-director).

Instead of specifying the far-feld director orientation along the x direction (case shown

in Fig. 4.44), it is specifed along the y direction in the next case. Unlike the case involving

a spherical particle, due to the lack of symmetry for the IgG macromolecule, signifcant

changes in the defect structure can occur when a change in the far feld director orientation

is imposed.
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Figure 4.45 shows an iso-surface for the scalar order parameter when the far-feld di-

rector orientation is along y-axis. Note that in Figure 4.45, the defect structure is not

predominantly confned to a plane perpendicular to the far feld orientation and is closely

infuenced by the IgG geometry. A complex defect structure is observed. This case under-

scores the importance of using three-dimensional simulations to study the defect structure

for cases with complex geometry. For this case, use of a two-dimensional simulation can

not provide a good description of the defect structure.

To verify that the resolution used in performing the above simulations for IgG was ad-

equate, another volume mesh with higher resolution (1,396,795 computational elements,

see Figure 4.43) was used and the computation corresponding to results shown in Fig-

ure 4.44 were repeated. Comparison of Figure 4.44.(a) with the corresponding results for

the case with higher resolution (see Figure 4.47) shows approximately the same results.

Based on this comparison we can conclude that the resolution chosen previously is ade-

quate.

4.5.3 The defect structure for one IgG adsorbed on substrates

Now we consider modeling the presence of IgG at the interface boundary, a case of

more practical interest for studying the sensor confguration. The effect of an adsorbed

biological macromolecule at an interface and its infuence on the liquid crystal medium

can be studied.
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(a) (b)

(c) (d)

Figure 4.44

Defect structure around one antibody IgG in the center of the cubic domain with far-feld
director along x-axis: (a) iso-surface of the scalar order parameter where S = 0.27; (b)
different view of case shown in (a); (c) scalar order parameter map in y − z plane with

x = 0; (d) biaxiality parameter map in y − z plane with x = 0 
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Figure 4.45

Defect structure around one antibody IgG in the center of the cube with far-feld director
along y-axis. Iso-surface for scalar order parameter where S 0.3    = 

(a) (b)

Figure 4.46

Cut section of high resolution volume mesh showing the faces of the tetrahedral elements
of the volume mesh. (b) is a magnifed view of the region close to the particle



www.manaraa.com

67

  

Figure 4.47

Defect structure around one antibody IgG in the center of the cube with far-feld director
along x-axis with high resolution volume elements. Iso-surface for scalar order parameter

where S = 0.27 
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The antibody IgG can be roughly considered as a Y-shaped object with two Fab (anti-

gen-binding) fragments corresponding to the left and right segments at the top and one Fc

(constant) fragment on the bottom (see Figure 4.43). Results from a theoretical study [27]

and a related experimental study [26] suggest that a high positive charge distribution at the

interface will favor an ‘end-on’ orientation of IgG at the interface (Fc fragment is close to

the interface and Fab fragments are far from the interface). The end-on orientation is the

preferred choice in applications involving immunoassays with IgG. The ‘head-on’ orien-

tation (Fc fragment is far from the interface and Fab fragments are close to the surface) is

not the preferred orientation.

In this work, we study the cases involving the antibody IgG adsorbed at the interface

boundary with both ‘end-on’ and ‘head-on’ orientations. The results are shown in fgures

4.48 - 4.49. It helps us to study the optical behavior of the sensor for cases involving pre-

ferred and non-preferred orientations. There are about 820,000 computational elements.

The far-feld orientation is along the x-axis (Figure 4.48) or y-axis (Figure 4.49).

Figure 4.50 shows the defect structure for a case involving the antibody IgG adsorbed

on a curved wall with ‘end-on’ orientations. Use of a non planar boundary surface enables

accounting for effects associated with nanoscale topography at the interface in simulation

of this LC based sensor.

The present case only considers one IgG macromolecule, but the same method can be

used for a case involving several macromolecules. From the detailed solution for the state

of liquid crystal system, an estimate for the intensity of light transmitted through the liquid



www.manaraa.com

69

crystal flm can be obtained in terms of a function of variables [7] (e.g. the concentration

of the particles adsorbed at the substrate) and this can be compared with the experimental

results.

Modeling the behavior of a sensor in the presence of a biological macromolecule has

been demonstrated using the present framework. Such capabilities enable the developed

framework to be used in assisting the design and development of the class of sensors

studied in this work.
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(a) (b)

(c) (d)

Figure 4.48

The defect structure around one antibody IgG adsorbed at the interface boundary with
far-feld director along x-axis: (a) iso-surface for ‘end-on’ orientation where S = 0.3; (b)
scalar order parameter for ‘end-on’ orientation in y − z plane with x = 0; (c) iso-surface

for ‘head-on’ orientation where S = 0.3; (d) scalar order parameter for ‘head-on’
orientation in y − z plane with x = 0 
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(a) (b)

Figure 4.49

Defect structure around one antibody IgG adsorbed at the interface boundary with
far-feld director along y-axis: (a) iso-surface for ‘end-on’ orientation where S 0.3; (b)

iso-surface for ‘head-on’ orientation where S 0.3 
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Figure 4.50

Defect structure around one antibody IgG adsorbed at the curved substrate with far-feld
director along x-axis. Iso-surface for ‘end-on’ orientation where S = 0.3 
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CHAPTER V

SUMMARY AND FUTURE WORK

From this work, a simulation framework that uses coarse-grained method with tensor

order parameter based on a dynamic feld theory for modeling the behavior of a class of

liquid crystal based sensors has been studied. Simulations corresponding to the geome-

tries using three-dimensional unstructured meshes have been performed based on solution

of an unsteady partial differential equation. Two kinds of shapes of geometries are used in

this work. At frst, the particles are simply modeled as spheres representing nanoparticles.

Then Immunoglobulin G(IgG) has been chosen as a sample case to demonstrate model-

ing the state of LCs by including a detailed description of the geometry of substances con-

tained within the liquid crystal medium. Through comparisons with results from detailed

molecular dynamics based studies in the literature it has been shown that simulations in

the present study yield expected trends for orientation of the liquid crystal and its dynamic

behavior. Several examples have been chosen for studying the dynamics of liquid crystals

in the presence of spherical particles or a biological macromolecule. We have investigated

the defect structure for one sphere, the interaction between two spheres and between one

sphere and two disclination lines, the dynamics and time evolution for spheres adsorbed

on solid surfaces, and the defect structure for a biological macromolecule. From the study
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of these cases, we have a good understanding for the defect structure in liquid crystals in

the presence of nanoparticles and biological macromolecules. In addition, comparing and

contrasting the defect structure associated with different geometries (e.g. spheres, IgG)

and boundary conditions can help us to obtain insight and to better guide us in the design

of suitable biosensors. This study also shows that using three-dimensional simulations can

allow us to better understand the defect structure compared with using two-dimensional

simulations.

Finally, some suggestions are made regarding future research topics in this area. It

remains to be seen whether it is possible to demonstrate that a satellite defect is a sta-

ble confguration for large particle size (around 720 nm radius). Extending the scope of

the present study to include more than one biological macromolecule, the interactions be-

tween the macromolecules and modeling the interface boundary using non planar, wavy

walls are of interest. Currently, parameters representative of the liquid crystal 5CB has

been used. We may consider other choices for design of this class of liquid crystal biosen-

sors. Use of three-dimensional simulations for estimating the critical concentration of the

spherical particles, above which no long-range uniform nematic order is observed, is also

of interest.
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